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Coaxial Cavities with Corrugated

Inner Conductor for Gyrotrons
Christos T. Iatrou, Stefan Kern, and Alexander B. Pavelyev

Abstract—This paper investigates coaxial gyrotron cavities with
longitudinal slots on the inner conductor as a means to reduce
the number of possible competing modes. In the analytic theory
the corrugated surface is treated as a homogeneous impedance

surface (“impedance corrugation”) to obtain simple formulas for
the characteristic equation of the eigenmodes, for the electro-
magnetic fields and the wall losses. The developed model applies
if the number of slots is sufficiently high (cutoff wavelength much
larger than the corrugation period). The characteristic equation

in terms of the ratio C of the outer wall radius to the inner

conductor radius is solved numerically to determine a range of

eigenvalues and C where the eigenvalue curves are monotonically
decreasing. In such a region a cavity having its inner conductor

downtapered (radius decreasing toward the cavity output) can be
used to reduce the diffractive quality factors of several modes,
leaving the working mode undisturbed and without favoring
other modes. In addition the electromagnetic field profiles are
investigated, and in particular it is shown that for certain cavity

parameters a mode could have its energy concentrated close to

the inner conductor. As a check on the validity of the theoretical
approximations, simulations with the MAFIA code are carried

out. These give good agreement with the results of the analytic
equations.

I. INTRODUCTION

H IGH-FREQUENCY, high-power gyrotron oscillators are

under development for plasma heating in future fusion

reactors. The main technological constraint in the design of a

gyrotron cavity is the thermal wall loading [1], [2], which must

be limited to 2–3 kW/cm2 for long pulses or CW operation.

To reduce the wall loading it is necessary to increase the

cavity diameter, and thus high-frequency operation requires

the use of high-order modes. As the mode spectrum becomes

more dense for high-order modes, beam positioning does not

provide a sufficient means for mode selection and stability,

and mode competition becomes a serious physical constraint.

Coaxial cavities have been proposed [3] to rarefy the mode
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spectrum and to reduce the competing action of neighboring

modes, enabling stable single mode operation of the device.

In a coaxial geometry the eigenvalue X~P of a TE~P (or

TM~P) mode becomes a function of the ratio C = RO/R, of

the outer to the inner conductor radius. If either the outer wall

or the coaxial insert is appropriately tapered, X~P (z) is not

constant, and a selective influence on the diffractive quality

factor Qd,ff of different modes becomes possible [3], [4]. This

offers a means to change the importance of a mode concerning

mode competition because the required starting current is

proportional to I/Q. For high power gyrotron cavities the total

Q-factor is mainly determined by the diffractive Q-factor. In

the following discussion a gyrotron cavity is considered to

consist of a weakly tapered waveguide with a total reflecting

cutoff section in lower z-values and a partly reflective output

in higher z-values. As the eigenvalue changes along z, the

diffractive quality factor increases with positive dZ~P/dZ,

compared to Qdiff in the corresponding hollow cavity, and

decreases in the opposite case. This is due to the fact that with

positive dX~P/dz the outgoing wave (traveling in positive

z-direction) travels toward increasing cutoff-frequency, thus

toward decreasing energy velocity and so keeps more energy

in the cavity than a wave with constant cutoff frequency.

For example, with a downtapered (decreasing toward the

cavity output) inner conductor, dC/dz is positive so that

Qdiff increases with positive dxmP/dC and vice versa. At a

given parameter C, different modes will have different slopes

clX~P/dC, and thus it is possible to increase their starting cur-

rent requirements by decreasing their quality factors without

changing the quality factor of the operating mode. On the other

hand, this is not a general rule, and not all modes will move to

the direction of a lower Q-factor. Some of them will increase

their Q-factor because of a positive slope dX~P /dC of the

eigenvaltte curve (in case of a downtapered rod), leading to

serious mode competition problems.

To overcome this problem the introduction of longitudinal

corrugations on the inner conductor surface is proposed. This

results in a significant modification of the eigenvalue curves

in terms of the parameter C. It will be shown that with

appropriate selection of the slot depth, the eigenvalue curves

X~P (C) will exhibit a monotonic behavior with C, and
therefore better handling of mode diffraction quality factors

is possible.

The paper is organized as follows: In Section II, an ap-

proximate constant surface-impedance model is applied to

the corrugated inner surface and the characteristic equation

of such a configuration is obtained. The wall loading of the
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cavity is also considered. In Section III, numerical solutions

of the analytic formulas are presented and the characteristic

features of the system are discussed. The behavior of the

electromagnetic field with respect to different parameters is

presented and design principles foracoaxial gyrotron cavity

are derived. In Section IV, the theoretical results are compared

with those obtained from the finite integration technique code

MAFIA. Section V is a summary and conclusion.

II. IMPEDANCE MODEL, CHARACTERISTIC

EQUATION, AND WALL LOADING

Consider a coaxial cavity with longitudinal corrugations on

the wall of the inner conductor, as depicted in Fig. l(a). The

outer wall radius is denoted by Ro, the inner radius by R~, and

the depth of the slots by d. Region I refers to the space inside

the slots, while region II is the area between the top surface

of the corrugations and the outer wall, The treatment of such

a problem should account for the azimuthal periodicity of the

structure, and therefore spatial harmonics should be considered

inside and outside the slots [5]–[7], However, for a sufficiently

large number iV of slots, a much simpler approach based on

an average surface impedance can be pursued [8]–[ 10]. Under

the condition

xRi
s<— (1)

m

where s = 27rR~/N is the circumferential length of a period

of corrugation and m is the number of field cyclic variations

with ~ (azimuthal index), the spatial harmonics are reduced

to sufficiently small levels. Therefore, the field components

of a TE~P mode in region II are those of a usual coaxial

resonator, given by

E, = j~C~PZ~P(klr)e-~m@V~axf(z) (2a)
‘r

134 = k~C~PZ&P(k~r)e-~n@V~.X~(~) (2b)

H, = –j ~C~PZ~P (k~fie-~mdV&Xj’(.z) (2c)
/%020

where the cylindrical function Z~P is given by

z~P(kLr) = Jm(klr) + AmpL(kLT) (3)

Jm (z) and Y~ (a) are Bessel and Neumann functions, with

derivatives referring to their argument, kl = XmP/Ro is the

transverse wavenumber, w is the wave angular frequency,

assuming a time dependence of exp(jwt), kO = u/c is

the free-space wavenumber, 20 = (po/EO)–112 is the free-

space wave impedance, V&x is the voltage that measures

the maximum rms amplitude of the transverse electric field

in the cavity, and ~(.z) is the field profile normalized to a

maximum value of 1. The normalization constant C’~P will be

determined later in (12). The transverse magnetic fields have

been neglected as the gyrotron operates close to cutoff where

these fields vanish.

Condition (1) ensures that the slot width 1 is smaller than

AC/2 where AC is the cutoff wavelength, so that the fields

can be assumed homogeneous inside the slots, although they

can vary from one slot to the next according to the azimuthal

(a)
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Fig. 1 (a) Cross section of the coaxial cavity. (b) Unfolded scheme of the

corrugated rod.

wavenumber. Therefore, the z-component of the electric field

vanishes inside the slot because it must obviously vanish at

the ridges. This means that the surface r = R~ behaves as a

perfect electric conductor for TM modes. Consequently, for

these modes the longitudinal slots have no effect on the fields

and the system acts as a usual smooth-wall coaxial resonator.

To show the effect on TE modes their characteristic equation

is derived in the following by matching the average wall

impedances of region I and region II.

To simplify the analysis further, the slot can be considered

as part of a rectangular waveguide. In Fig. l(b) the unfolded

transverse structure and the coordinate system used in the

analysis are presented. Inside a slot O <; x < d (or equivalently

R~ – d 5 x s R~) the field should be y-independent and can

be approximated by a part of a rectangular TEl,o mode with

field components

Ev = –klA1o sin(klz)V.l.X,f(z) (4a)

Hz = –j&Al. COS(kL:C)Vmaxf(Z). (4b)
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It is readily seen that the boundary condition EY = O at

r = Ri – d is satisfied. The surface impedance at r = R%

is anisotropic, with Z: = Ez /Hz = O and

{

o O<y<s–1
‘“tan(kld) s–l<y <s”

(5)

z: = (Ev/lZz).=d = –jzo ~

From (5) one can compute an average surface impedance from

region I to match it with that one calculated from region II.

This average surface impedance is

(6)

where the normalized surface impedance w, as a function of

the eigenvalue X~P and the corrugation parameters, is given,

by

1 ( -)d
W(xmp)= ~tan Xmp R “

0
(7)

Using the field components given in (2), which hold in region

II, one computes the following surface impedance at r = R,

from region 11

ka ZAP (k~R,)
– jzl)— (8)2$ = (Ep/Hz)?-=R, –

k~ z’rnP(k~Ri) “

Matching the two surface impedances (6) and (8), and applying

the boundary condition for the tangential electric field compo-

nent on the outer wall, we obtain the characteristic equation

and the field coefficient Amp for a coaxial geometry with axial

impedance corrugations on the rod

‘L(Xmp)[yA(Xrnp/c) + wL(Xrnp/c)l
– Y:(xmp)[.J&(xmp/c) + wJm(xmp/c)] = o (9)

and

A
J~(ymP/C) + WJm(XmP/C)= ‘L(Xmp)

– y~(xmp) “‘p = – Y~(xmp/C)+ wL(Xmp/c)
(lo)

The rectangular-waveguide field coefficient Ala is computed

by applying the continuity condition of the z-component of

the magnetic field Hz at r = R,

Ala =
Zmp(Xmp/c) Cmpe-jm+.

cos(Xmpd/RO)
(11)

where q$~is the azimuthal angle of each slot. The normalization

constant C~P is obtained by applying the usual orthonormality

condition [11] and it is given by

1
@- =7T(,~~p-?712)Z~ P(Xmp)

mp

{

_ ~ X&p
~(l+w’)-~

x[W+%(:+fW2)I-~2}ZW%
(12)

In the evaluation of the normalization constant C~P the

field energy over the whole space, including the slots, was

considered.

The characteristic equation given by (9) is equivalent to

that obtained by Li et al. [6] and Li and Li [7] in the

limit of negligible spatial harmonics. They describe the field

components inside the slots using cylindrical functions. In this

case the following expression for an equivalent normalized

surface impedance can be obtained

Jl(xmp/c)yl (Xmp/c’) – ‘l(Xmp/c)~l(XmP /c’)

x Jo(xmp/c)yl (xmp/c’) – yo(xmp/c’)Jl(xmp /c’)

(13)

where IV is the number of slots around the circumference,

20 = r/N, and C’ = (Rz – d)/RO characterizes the radial

position of the bottom of the corrugations relative to the outer

wall radius. Since they implicitly assume in their model s = 21,

the parenthesis in (13) becomes 1/2 in the limit of a large

number of slots. In the next section it will be shown that the

two ways of approaching the problem are almost equivalent.

The characteristic equation (9) can be readily applied in the

limit of vanishing normalized surface impedance w to obtain

the characteristic equation of a TE~P mode in a coaxial cavity

with smooth inner-conductor surface

J~(xmp/c)y:(xmp) – yA(xmp/c)JL(xmP) = 0. (14)

The normalization factor C~p and the field coefficient Amp

can be easily obtained from (12) and (10) under the same

limiting condition w = O. Note that the mode eigenvalues

depend on the ratio C of the outer to the inner radius of

the coaxial resonator. If the radius of the inner conductor is

very small compared to the outer radius then the characteristic

equation (14) becomes the usual characteristic equation of TE

modes in an empty cylindrical resonator, that is JA (Xmp) = O.

Modes with caustic radius R. = mRO/Xmp larger than the

inner conductor radius are only slightly influenced by the

presence of the rod. Solutions of (14) will be also presented

in the next section.

Let us now calculate the ohmic losses of the microwave

power on the resonator walls. The dissipated power density is

given by [12]

p.hm = ~R.HzH”z (15)

where R. = l/(oh) is the surface resistance, a is the

conductivity of the material, and 6 = [2/ (w~o)] 1/2 the

skin depth. The contribution of the transverse magnetic field

components to the losses has been neglected since the gyrotron

operates close to cutoff. To derive an expression of the wall

loading in terms of the output power and the diffractive Q-

factor of the resonator we use the energy balance equation to

obtain

L/2

Qdiffl’.ut = ~EOLJV&x
J

f’(z) dz (16)
–LIz

where L is the cavity length. Concerning gyrotron cavity

design, the most important parameter is the peak value of the

wall loading, which on the outer wall and on the top surface
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of the corrugations is given by

Outer wall

Top corrugation surface

peak _ 27r26 .z:p(xmp/q 2
Pi,top

_— cmPQdiffP.ut

‘2 J32 f’z(”w

(18)

where the cylindrical function ZmP is given in (3). In case

of a Gaussian field profile \(z) the integral is approximately

equal to 0.625L.

The axial component Hz of the magnetic field inside the

slot, given in (4b), induces wall currents on the radial surfaces

of the corrugations, as well as at the bottom surface. The

loading of these surfaces is readily found to be

radkd surface

peak P%;
COs2(xmPx/Ro) (19a)

‘i’radial = COS2(xmpd/Ro)

bottom surface

peak P&$

‘i’b”tt”m = Cos’ (xmpd/Ro) “
(19b)

In the limit of vanishing cosine function these formulas still

apply because the numerator also approaches zero there.

For a corrugation depth d close to a quarter of the free-space

wavelength, which will be shown later to be an appropriate

design value, the loading of the top surface of the corrugations

(r= Ri) is negligible, as in this case the normalized surface

impedance w tends to infinity and the RF magnetic field at

R; vanishes. Under these conditions the main part of the

dksipated power on the inner conductor comes from the wall

loading at the bottom, as well as at the radial surfaces of the

corrugations.

III. NUMERICAL RESULTS AND DISCUSSION

It was already mentioned that the main advantage of a

coaxial geometry concerning mode competition is the depen-

dence of the mode eigenvalue X~P on the radii-ratio parameter

C. Typical solutions of the characteristic equation (9) as a

function of C are shown in Fig. 2(a) with the corrugation

depth d as parameter. The azimuthal index is set to m = 8

and the given examples are in a relatively low eigenvrdue

range in order to be able to compare with results obtained

from numerical codes such as MAFIA. A realistic working

mode for high power and high frequency gyrotrons will

be of much higher order. The behavior of the eigenvalue

curves Xmp (C) will be described in terms of the ratio d/&

where & = 27rR0 /X~P is the cutoff wavelength. Since &

is a function of the eigenvalue X, we choose the hollow

waveguide eigenwdue of the TE8,3 mode (X8,3 = 17.77’4)

as a reference for the description of the parametric curves

in Fig. 2(a). In the case of a smooth coaxial insert (thick

curves in Fig. 2(a)) for large values of C (small Ri) the

eigenvalues are practically independent of C and equal to the

corresponding hollow waveguide eigenvalues. With decreasing

C (increasing Ri), the influence of the rod becomes gradually

more important. The eigenvalue curves exhibit first a positive

slope dX~p/dC and after passing a minimal value they

rapidly increase (negative slope dx~p / dC) in the region of

strong influence of the rod (small C). When the corrugation

is added, the region of positive slope broadens and moves

toward higher C values (curves a, b, and c). The eigenvalue

minimum decreases and also occurs at higher C values. As

the corrugation depth approaches AC-4, the minimum value

of an eigenvalue curve becomes equal to the eigenvalue of

the next lower radial mode with the same azimuthal index

m (solid curve c or dashed curve d). The eigenvalue curve

now consists of a constant part at the corresponding hollow

waveguide eigenvalue (not visible in Fig. 2(a), see thick solid

line in Fig. 3), then a part having positive slope in relatively

high C values and another nearly constant part at a value which

is equal to the hollow waveguide eigenvalue of the next lower

radial mode. At that point where the influence of a smooth rod

started, indicated by a decrease in eigenvalue, the eigenvalue

in the corrugated system starts to increase, so that the rest of

the curve (toward smaller C) exhibits only a negative slope

dx~p/dC. For A~/4 < d < 3&/8 (solid curves d and e in
Fig. 2(a) or curves above x x 47 in Fig. 3) the positive slope

vanishes and the eigenvalue curves remain with a constant

undisturbed part, and a part of negative slope due to a strong

influence of the rod. For higher d the eigenvalue curves exhibit

a positive slope again, until d z &/’2, where they become

approximately the same with those of a,smooth coaxial cavity

(solid curve f in Fig. 2(a)). In even higher d the described

behavior will be repeated periodically with a period of JC/2.

It has been shown in [3] and [4] that in a coaxial cavity

with tapered smooth inner conductor there is the possibility

of selective influence on the diffractive quality factor of

different modes, and thus on the starting current requirements

of these modes. In a coaxial cavity with a downtapered rod a

positive slope dxmp/dC of the eigenvalue curve leads to an

increase of the mode diffractive quality factor, and vice versa.

Nevertheless, it is obvious from the curves in Fig. 2(a), that

in case of a smooth rod (thick solid curves) some modes will

have an increase of their Q-factor while some others will have

a decrease of Q, depending on the slope of their eigenvalue

curve at the design range of the C-parameter. It will be shown

later that to avoid high wall loading cm the rod the working

mode must remain nearly undisturbed (dX~p/dC N O), which

sets a limit on the minimal usable C value. This means also

that the quality factor of the working mode will remain the

same as in the corresponding hollow cavity. Therefore any

increase in quality factors of possible competitors must be

avoided.

Modes with a caustic radius close to that of the working

mode are usually the most serious competitors because they

couple as well to the electron beam as the working mode.

The influence of the inner conductor on the eigenvalues starts

approximately when the rod gets near to the caustic radius

of a mode, so that obviously only the modes with smaller

caustic radius can be disturbed by the rod if C is chosen as
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Fig. 2. (a) Eigenvatueversus C for T’Es,3 mode (dashed lines) and TEs:4
mode (solid lines). Thick lines are for smooth inner conductor (d = O), thm

lines as labeled: d/At = 0.08 (a), d/& = 0,17 (b), d/At = 0.21 (c),
d/At = 0.26 (d), d/AG = 0.38 (e), d/At = 0.50 (f) with &/Ro = 0.35

and 1/s = 0.5. (b) Section from (a) around the “degeneracy point” between
TEs,3 and TE8,4 (only curves (c) with d/AG = 0.21, d/R. = 0.075).

small as acceptable. But in case of a smooth inner conductor

these weakly influenced modes will unfortunately exhibit a

positive slope in their eigenvalue curves, as discussed above,

which will lead to an increased Q-factor and possibly to

unstable operation, if a downtapered rod is used. Employing

an uptapered rod would solve the problem only for the few

weakly influenced modes, but would increase the quality
factors of all the strongly influenced modes. Actually the

problem is that the eigenvalue curves for a coaxial geometry

with smooth rod are not monotonic.

On the other hand, it is shown in the first paragraph of

this Section that the introduction of longitudinal corrugations
on the inner conductor solves this problem in the sense that

with a corrugation depth in the range )./4 < d < 3AC/8 the

eigenvalue curves X~P (C) are monotonic with a negative or

vanishing slope for all values of C. Therefore by choosing

the minimal acceptable value for C, imposed by wall loading,

the working mode and the other noninfluenced modes will

keep the same quality factor as in a hollow cavity, while

the quality factors of some of the competing modes will

be decreased. Thus a first design rule for coaxial gyrotron

cavities could be to use a downtapered rod and a corrugation

with slot depth slightly larger than &/4. Nevertheless, to

avoid mode competition with higher cyclotron harmonics, it

is desirable to keep the slot depth as small as possible. If, for

example, d = AC/4 at the first cyclotron harmonic, the modes

at the second cyclotron harmonic, with eigenvalues twice as

high, will not be influenced by the corrugation since the slot

depth corresponds to d = At/2 in their eigenvalue region.

Thus some of them will exhibit a positive slope and may

become serious competitors due to an increased quality factor.

To avoid positive slopes in eigenvalue curves at the second

cyclotron harmonic the slot depth must be slightly decreased

from d = &/4, where & is the cutoff wavelength of the

operating mode.

In the range d < JC/4, a slot depth d can be found such that

for a restricted design range of C and x the curves Xrnp(C)
show only a negative slope, even though at higher C values,

out of the design range, a positive slope appears. This is

actually demonstrated in Fig. 3, which gives an overview of

the eigenvalue curves of m = 8 modes at d/R. = 0.033. At an

eigenvalue x z 47 the chosen corrugation depth corresponds

to AC-4. It is seen that the positive slope parts seem to form

a single, additional “eigenvalue curve” as &/4 approaches d

and for high C values. This curve can be approximated by the

solution of the following equation

‘A(Xmp/c) + ~En(Xrnp/C) = 0. (20)

This equation is derived from (9) by dividing by J~ (X~P)

and neglecting the Bessel function Jm (xmp /C) and its deriva-

tive, which are small compared to the Neumann function

Y~ (X~p/C) for small arguments. The actual design problem
is now to determine a slot depth d smaller than AC/4 for the

working mode such that no positive slope in the eigenvalue

curves of the working mode and any possible competing mode

with different azimuthal index can appear inside the region

of interest, which is given by the maximum C of the cavity

and the cyclotron amplification bandwidth. It was already

mentioned that modes with caustic radius smaller than the

caustic of the working mode will exhibit a negative slope in a

corrugated system with a slot depth approaching At/4. In the

narrow eigenvalue range, which corresponds to the cyclotron

amplification bandwidth (+570) these are practically all the

modes with m < m. where m. is the azimuthal index of the

operating mode. Since the caustic radius of the operating mode

must be greater than the inner conductor radius, the inequality

X/m < Co holds for m ~ m. in the cyclotron amplification

bandwidth. Therefore, (20) can be further simplified using the

recurrence relations for Neumann functions to yield

mC

‘mp = W(xmp)
(21)

where the term Y~ (XmP/C) / Ym (XmP/C) has been neglected,

which is an acceptable approximation for C > X~P/m.

Equation (21) is an approximation of the undesired positive

slope parts of the eigenvalue curves, so that for a given C
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me atso solutions of (9), but ttilng w from (13). The thick solid line is the
eigenvalue curve of TEE,9.

and m, any curve of greater eigenvalues will not exhibit a

positive slope. Therefore fora given minimum eigenvahte a

minimum usable din terms of A.canbe determined using (7).

The azimuthal index of the possible competitors is considered

to be smaller than 2m0. With 1/s = 1/2 a minimum d

of 0.21A. (W % 2) is computed. This slot depth results in

d w 0.4AC at the second cyclotron harmonic, so that only small

positive slopes in the eigenvalue curves can appear there. The

minimum d can be slightly decreased if 1/s is increased up to

the mechanically feasible limit.

Let us now summarize the derived design principles of

a coaxial gyrotron cavity with corrugated rod. The inner

conductor should be downtapered (decreasing radius toward

the cavity output), with radius Ri as large as possible to

influence a maximum number of modes. The working mode

should remain undisturbed, which sets an upper limit to the

radius and a corresponding lower limit to C. An effective

slot depth of d % 0.2AC is considered as a proper design

value to improve the stability of the operating mode against

competitors in the first and second cyclotron harmonic. The

effective corrugation depth d can be increased up to 3&/8, if

mode competition with the second cyclotron harmonic is not

considered.

To compare the presented model to that of Li et al. [6],

solutions of the characteristic equation (9) are given in Fig. 3

using expression (13) for the normalized impedance w for the

same geometrical slot depth d (dashed curves, mostly covered

by the solid curves). It can be seen that the behavior is similar

in both approaches. Both solutions can be made to coincide

nearly exactly, if an effective d is used in (13), in this special

case at d/Ro = 0.04. The difference in effective slot depth is

explained by the different geometry of the two models, since

Li et al. [6] use a nonrectangular slot geometry with boundary

planes along the cylindrical coordinates. In general one can

apply (7) to corrugations with nonrectangular shaped slots, if

an effective slot depth is used [13]. This also means that one

has to take care and use an effective slot depth in case the

slots are not perfectly rectangular.

To check the applicability of corrugated cavities to gy-

rotrons, the electromagnetic fields of the modes must be

investigated. This also will give an insight into the behavior

of the positive-slope parts of the eigenvalue curves, which

seem to form a single, additional curve for high C values,

as discussed above. In Fig. 4 the radial profile of the II,

component is presented at six different points marked in Fig. 2.

Note that the points 1, 3, and 5 belong to the same eigenvalue

curve, while 2, 4, and 6 belong to the next higher radial mode.

These two curves actually do not touch, although they are

approaching very close to each other (see Fig. 2(b)). From

Fig. 4 one can recognize two kinds of fields. l[n the parts

of the eigenvalue curves with positive slope the energy is

concentrated near the rod, while in the constant parts the field

profile is similar to the commonly known one of the hollow

waveguide, and is therefore well suited to be used in a gyrotron

cavity. The fields at points 1, 4, and 6 show the character of a

TE8,3 mode, even though points 4 and 6 belong to the fourth

eigenvalue curve. The fields at points 2, 3, and 5, with their

maximum on the inner surface, are permitted by the average

surface impedance at r = Ri. For convenience we will call a

mode with such a field pattern “inner mode” in the following,

The inner mode appears in all positive-slope regions of the

eigenvalue curves, if the slot depth is sufficiently high. As

it is concentrated on the rod, it is influenced even at very

high C’ values, in contrast to the usual modes. Therefore the

inner mode looks like an independent additional mode for

high C values, where the usual modes are not disturbed by

the rod. Interaction between the inner mode and modes with

the usual transverse structure takes place only at the “points

of degeneracy,” which indeed are not crossing points (see

Fig. 2(b)). As it can be seen in Fig. 4. the field at the inner

boundary r = R, changes sign at these points. This indicates

that the “eigenvalue curve” of the inner mode, as given by

(20), is not continuous but consists of tle positive-slope parts

of the different eigenvalue curves. It should be pointed out

again that this mode does not exist for A./4 < d < A./2.

To give a typical example for wall losses the loading of the

cavity walls has been computed using ( 17)–( 19) for a TEs,3

mode. The frequency was assumed to be 28 GHz, the output

power 1 MW and the diffractive quallity factor 1200, while

the conductivity was that of ideal cc~pper. The corrugation

depth was taken d/Ro = 0.075, In Fig. 5 the wall loading

on the outer wall (thick line) and on the bottom surface of

the corrugations (dashed line) is presented together with the

eigenvalue curve (thin line). The part of the eigenvalue curve

with positive slope is included to study the influence of the

inner mode on wall loading. The losses on the top surface of

the corrugation are about a factor of 20 lower than those on

the bottom. For C >5 the inner mode causes a strong loading

on the bottom surface of the corrugaticms while the outer wall

is nearly unloaded. Note that with such a high loading the

decreased ohmic quality factor could dominate the increased

diffractive quality factor, thus increasing the starting current

of the inner mode. In the constant part of the eigenvalue curve

(3.5 < C < 5), where the mode is nearly an undisturbed

TE8,3, the loading of the outer wall is approximately constant

to 0.7 kW/cm2 while that of the bottclm surface is decreased
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Fig. 4. (a) Radial profile of the Hz-component of TE8,3 (1) and the inne~
mode (2) at C = 5.3 (d/& = 0.075 ). Curve numbers refer to the marked
points in Fig. 2(a) or (b). (b) Radial profile of the Hz-component of TE8,4
(4) and the inner mode (3) at C = 5.0 (d/Ro = 0.075). Curve numbers
refer to the marked points in Fig. 2(a) or (b). Note that the TE8,4 now shows

the field structure of a TE8,3 mode. (c) Radial profile of the H, -component
of TE8)4 (6) and the inner mode (5) at C = 3.5 (d/Ra = 0.075). Curve

numbers refer to the marked points in Fig. 2(a). Note that the TE8,4 now
shows the field structure of a TEs,3 mode.
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Fig. 5. Wall loading versus C for TEs,4 (d/Ro = 0.075). The inner mode
appears for C > 5.

to an acceptable level of 0.3 to 1 kW/cm2. By further decrease

of C the loading of both surfaces increases, especially the one

at the bottom surface. Therefore, with regard to wall loading

the design range of the C parameter is limited in general, in

this example to 3.5 < C <5. In this range the wall loading

at the bottom of the corrugated surface is of the same order

as in the case of smooth inner conductor.

IV. COMPARISON WITH MAFIA CODE

MAFIA is a numerical code using the finite integration

technique (FIT) algorithm to solve Maxwell’s equations [14].

In this study MAFIA has been used to compare with the

results of the theoretical model presented in Section II. ‘Two-

dimensional simulations were performed in a sector of ?/8 of

a coaxial waveguide with five longitudinal slots (1/s = ,1/2).

Assuming ideal electric conductors on the radial boundary of

this sector the eigenmodes in such a geometry are TE8(A– 1,,P

and TM8n,P (n ~ IV). A number of simulations were carried

out with different ratio C and corrugation depth d. As an

example, the eigenvalues found by MAFIA for d/R. = 0.075

are compared in Fig. 6 with the solutions of (9). In any~case,

the eigenvalues determined by both methods were eqtial up

to the accuracy of the MAFIA code, which was limited by

discretisation. Note that in Fig. 6 also the increasing positive

slope for disturbed modes is found.

In Fig. 7(a) and (b) the radial profile of the II, magnetic

field component evaluated by MAFIA (thick lines) and by

expressions (2c) and (4b) (thin lines) is presented, aw,uming

C = 2, and d/Ro = 0.075. Excellent agreement is found

both inside the slots, where the field is approximated’ by a

trigonometric function, and outside the slots, where the field

is expressed in terms of Bessel functions. Modes with the

field concentrated on the inner conductor are also indicated by

MAFIA simulations, as can be seen in Fig. 7(b).

Good agreement was found concerning wall loading com-

puted from MAFIA simulations and compared to the cor-

responding results from ( 17)–( 19), especially for the ratio

between losses at the top surface of the corrugations to the

bottom surface,
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V. CONCLUSION

A coaxial cavity configuration with longitudinal corruga-

tions on the inner conductor has been investigated in the case

of small corrugation periodicity (constant impedance surface).

This geometry is proposed for use in highly overmoded

cavities of high power gyrotrons in order to reduce the problem

of mode competition. With an appropriate slot depth (d =

0.2~C – 3&/8), the corrugations remove any positive slope

dX~P/dC from the eigenvalue curves X~P (C) for all the

modes inside the cyclotron amplification bandwidth, so that

no unwanted modes with increased quality factor can appear

in the spectrum of a coaxial cavity with downtapered inner

conductor. It is therefore possible to design coaxial cavities,

where only the chosen working mode TE~P and modes with

the same or higher caustic radius R. = mRo /xmp exhibit a

high diffractive quality factor, while Qdiff of the other modes

is considerably reduced. Since the required starting current

is proportional to I/Q, modes with decreased Qdiff require

an increased beam current to start oscillations in the gyrotron

cavity. Therefore, compared to a coaxial cavity with smooth

rod, modes with lower caustic radius are no longer serious

competitors. On the other hand, modes with caustic radius

considerably higher than that of the working mode couple

weakly to the electron beam, because they exhibit low fields at

the beam position. Finally, in a cavity with properly corrugated

and downtapered inner conductor only modes with caustic

radius close to the caustic radius of the working mode remain

as potentially dangerous competitors. Within the cyclotron

amplification bandwidth these are the modes with azimuthal

index m close to the azimuthal index of the working mode.

A quality-factor spectrum of a coaxial cavity with corrugated

and downtapered inner conductor and d % 0.22& was already

given in [15].

An impedance corrugated rod with d < At/4 permits

the existence of a type of mode (inner mode) with its field
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concentrated on the inner conductor. For low C the usual

waveguide modes transform to the inner mode along the

eigenvalue curve, where dxmp/dC is positive, and they end

up at the eigenvalue of the neighboring radial mode with the

same m. For high C the inner mode behaves as an additional

mode with an eigenvalue approximately described by (20)

or (21). This mode does not interfere with the usual modes,

except for some points where it is degenerate with them. One

possible problem caused by this inner mode could be increased

mode conversion in the resonator uptaper section, where C

rises from the cavity Co to infinity. Therefore the corrugations

should be stopped before C becomes high enough to permit

the appearance of such a mode.

Care has to be taken to avoid mode competition between

the cyclotron harmonics due to a possible increase of the

quality factor at the second cyclotron harmonic. A corrugation

depth equal to ~C/4 for the operating mode (first cyclotron

harmonic) results in an effective depth of AC/2 in the second

cyclotron harmonic eigenvalue region. Then the positive slope

of the eigenvalue curves appears as in the case of smooth

inner conductor, and the Q-factor of these modes increases

for a downtapered inner conductor. These modes could be-

come unexpected competitors, as their starting currents can be

comparable to the starting current of the working mode. The

problem is solved by using a slightly smaller slot depth of

d R 0.2 AC. On the other hand, employing d ~ /iC/4 could be a

means to enforce oscillations at the second cyclotron harmonic

in low power gyrotrons. Note that for these modes wall losses

on the rod will be much higher than at the outer wall, so that

the gyrotron output power must be limited to a few kW.

The Forschungszentrum Karlsruhe and the IAP Nizhny

Novgorod will investigate the presented design principles in

a joint experiment [15]. A T&,16 coaxial gyrotron with 1.5

MW output power at 140 GHz is already under construction,

and first experiments are expected in autumn 1995.
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