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Coaxial Cavities with Corrugated
Inner Conductor for Gyrotrons

Christos T. Iatrou, Stefan Kern, and Alexander B. Pavelyev

Abstract—This paper investigates coaxial gyrotron cavities with
longitudinal slots on the inner conductor as a means to reduce
the number of possible competing modes. In the analytic theory
the corrugated surface is treated as a homogeneous impedance
surface (“impedance corrugation”) to obtain simple formulas for
the characteristic equation of the eigenmodes, for the electro-
magnetic fields and the wall losses. The developed model applies
if the number of slots is sufficiently high (cutoff wavelength much
larger than the corrugation period). The characteristic equation
in terms of the ratio C of the outer wall radius to the inner
conductor radius is solved numerically to determine a range of
eigenvalues and C' where the eigenvalue curves are monotonically
decreasing. In such a region a cavity having its inner conductor
downtapered (radius decreasing toward the cavity output) can be
used to reduce the diffractive quality factors of several modes,
leaving the working mode undisturbed and without favoring
other modes. In addition the electromagnetic field profiles are
investigated, and in particular it is shown that for certain cavity
parameters 2 mode could have its energy concentrated close to
the inner conductor. As a check on the validity of the theoretical
approximations, simulations with the MAFIA code are carried
out. These give good agreement with the results of the analytic
equations.

I. INTRODUCTION

IGH-FREQUENCY, high-power gyrotron oscillators are
Hunder development for plasma heating in future fusion
reactors. The main technological constraint in the design of a
gyrotron cavity is the thermal wall loading [1], [2], which must
be limited to 2-3 kW/cm? for long pulses or CW operation.
To reduce the wall loading it is necessary to increase the
cavity diameter, and thus high-frequency operation requires
the use of high-order modes. As the mode spectrum becomes
more dense for high-order modes, beam positioning does not
provide a sufficient means for mode selection and stability,
and mode competition becomes a serious physical constraint.
Coaxial cavities have been proposed [3] to rarefy the mode
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spectrum and to reduce the competing action of neighboring
modes, enabling stable single mode operation of the device.

In a coaxial geometry the eigenvalue Xmp of a TEy, (or
TMynp) mode becomes a function of the ratio C = R, /R, of
the outer to the inner conductor radius. If either the outer wall
or the coaxial insert is appropriately tapered, Xmp(2) is not
constant, and a selective influence on the diffractive quality
factor Qug of different modes becomes possible [3], [4]. This
offers a means to change the importance of a mode concerning
mode competition because the required starting current is
proportional to 1/Q. For high power gyrotron cavities the total
Q-factor is mainly determined by the diffractive Q-factor. In
the following discussion a gyrotron cavity is considered to
consist of a weakly tapered waveguide with a total reflecting
cutoff section in lower z-values and a partly reflective output
in higher z-values. As the eigenvalue changes along z, the
diffractive quality factor increases with positive dymp/dz,
compared to Qg in the corresponding hollow cavity, and
decreases in the opposite case. This is due to the fact that with
positive dxmp/dz the outgoing wave (traveling in positive
z-direction) travels toward increasing cutoff-frequency, thus
toward decreasing energy velocity and so keeps more energy
in the cavity than a wave with constant cutoff frequency.
For example, with a downtapered (decreasing toward the
cavity output) inner conductor, dC/dz is positive so that
Qi increases with positive dymp/dC and vice versa. At a
given parameter C, different modes will have different slopes
dxmp/dC, and thus it is possible to increase their starting cur-
rent requirements by decreasing their quality factors without
changing the quality factor of the operating mode. On the other
hand, this is not a general rule, and not all modes will move to
the direction of a lower Q-factor. Some of them will increase
their @-factor because of a positive slope dxmp/dC of the
eigenvalue curve (in case of a downtapered rod), leading to
serious mode competition problems.

To overcome this problem the introduction of longitudinal
corrugations on the inner conductor surface is proposed. This
results in a significant modification of the eigenvalue curves
in terms of the parameter C. It will be shown that with
appropriate selection of the slot depth, the eigenvalue curves
Xmp(C) Wwill exhibit a monotonic behavior with C, and
therefore better handling of mode diffraction quality factors
is possible.

The paper is organized as follows: In Section II, an ap-
proximate constant surface-impedance model is applied to
the corrugated inner surface and the characteristic equation
of such a configuration is obtained. The wall loading of the
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cavity is also considered. In Section III, numerical solutions
of the analytic formulas are presented and the characteristic
features of the system are discussed. The behavior of the
electromagnetic field with respect to different parameters is
presented and. design principles for a coaxial gyrotron cavity
are derived. In Section IV, the theoretical results are compared
with those obtained from the finite integration technique code
MAFIA. Section V is a summary and conclusion.

II. IMPEDANCE MODEL, CHARACTERISTIC
EQUATION, AND WALL LOADING

Consider a coaxial cavity with longitudinal corrugations on
the wall of the inner conductor, as depicted in Fig. 1(a). The
outer wall radius is denoted by R,,, the inner radius by R;, and
the depth of the slots by d. Region I refers to the space inside
the slots, while region II is the area between the top surface
of the corrugations and the outer wall. The treatment of such
a problem should account for the azimuthal periodicity of the
structure, and therefore spatial harmonics should be considered
inside and outside the slots [5]-[7]. However, for a sufficiently
large number N of slots, a much simpler approach based on
an average surface impedance can be pursued [8]-[10]. Under
the condition

7TRi
s <

@
m

where 3 = 27 R; /N is the circumferential length of a period
of corrugation and m is the number of field cyclic variations
with ¢ (azimuthal index), the spatial harmonics are reduced
to sufficienfly small levels. Therefore, the field components
of a TE,,, mode in region II are those of a usual coaxial
resonator, given by

E, = j%Cmpzmp(kﬂ)e-jm‘ﬁvmaxf(z) (2a)
Eg = ki CmpZloy(k1r)e ™ Vinax f(2) (2b)
H, = —jEO%—OCmpzmp(kme—iWVmax fz) Qo
where the cylindrical function Z, is given by
Zp(k17) = T (kir) + AmpYom(ki7) 3)

Jm(z) and Y;,(x) are Bessel and Neumann functions, with
derivatives referring to their argument, k; = Xmp/Ro is the
transverse wavenumber, w is the wave angular frequency,
assuming a time dependence of exp(jwt), ko = w/c is
the free-space wavenumber, Zo = (uo/e0)” /2 is the free-
space wave impedance, Vinax is the voltage that measures
the maximum rms amplitude of the transverse electric field
in the cavity, and f(z) is the field profile normalized to a
maximum value of 1. The normalization constant Cy,;, will be
determined later in (12). The transverse magnetic fields have
been neglected as the gyrotron operates close to cutoff where
these fields vanish.

Condition (1) ensures that the slot width ! is smaller than
Ae/2 where A, is the cutoff wavelength, so that the fields
can be assumed homogeneous inside the slots, although they
can vary from one slot to the next according to the azimuthal
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Z

(®)

Fig. 1 (a) Cross section of the coaxial cavity. (b) Unfolded scheme of the
corrugated rod.

wavenumber. Therefore, the z-component of the electric field
vanishes inside the slot because it must obviously vanish at
the ridges. This means that the surface » = R; behaves as a
perfect electric conductor for TM modes. Consequently, for
these modes the longitudinal slots have no effect on the fields
and the system acts as a usual smooth-wall coaxial resonator.
To show the effect on TE modes their characteristic equation
is derived in the following by matching the average wall
impedances of region I and region IL

To simplify the analysis further, the slot can be considered
as part of a rectangular waveguide. In Fig. 1(b) the unfolded
transverse structure and the coordinate system used in the
analysis are presented. Inside a slot 0 < = < d (or equivalently
R, — d < z < R;) the field should be y-independent and can
be approximated by a part of a rectangular TE; 0 mode with
field components

E, = ki Aiosin(ki @) Viax f(2) (4a)
2 ~
H,=—j kL A cos(ky ) Vimax f(2). (4b)
koZy
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It is readily seen that the boundary condition £, = 0 at
r = R; — d is satisfied. The surface impedance at r = R,
is anisotropic, with Z! = E,/H, = 0 and

- _fo 0<y<s-I
Zy = (Ey/Hz)a::d - {—jZO:—itan(ki_d) s—1l< y < <(95)

From (5) one can compute an average surface impedance from
region I to match it with that one calculated from region II.
This average surface impedance is

~ 1 [° ko

Zi=- | Z(y)dy=—jZo—w 6
y S /0 y(y) Y J4o kJ_ ( )
where the normalized surface impedance w, as a function of
the eigenvalue xmp and the corrugation parameters, is given,
by

{ d
w(me) = gtan (meR—) @)

Using the field components given in (2), which hold in region
II, one computes the following surface impedance at 7 = R,
from region II
ko Zinp (BLRY)
23 = (BEp/H,) =g, = j 20— 2= L 8
¢ ( <P/ ) =R, J OkJ_ Zmp(kLRi) ( )
Matching the two surface impedances (6) and (8), and applying
the boundary condition for the tangential electric field compo-
nent on the outer wall, we obtain the characteristic equation
and the field coefficient A, for a coaxial geometry with axial
impedance corrugations on the rod

Jr/n(me)[YrIn(me/C) + wYm(me/C)]
— Yo (xnp) [T (X / C) + Wi (Xanp /C)] = 0 (9)

A — I (Xrp/C) + Wi (Xmp /C) _ _ I (Ximp)
mp — -

Y Otmp/C) + 0V (Xmp/C) ¥ (Xamp)
(10)

The rectangular-waveguide field coefficient A;g is computed
by applying the continuity condition of the z-component of
the magnetic field H, at r = R,

_ Zmp(me/C) C.. o—imbs
cos(Xmpd/Ro)

where ¢, is the azimuthal angle of each slot. The normalization
constant C,, is obtained by applying the usual orthonormality
condition [11] and it is given by

1 2 2y 72
CTmp :W(me_m )Zmp(me)

11

Xm
2)__p
Xmpd (L s 5 2l 72 [ Xmp
Lo ()] ()
12)

In the evaluation of the normalization constant Cmp the
field energy over the whole space, including the slots, was
considered.

The characteristic equation given by (9) is equivalent to
that obtained by Li er al. [6] and Li and Li [7] in the
limit of negligible spatial harmonics. They describe the field
components inside the slots using cylindrical functions. In this
case the following expression for an equivalent normalized
surface impedance can be obtained )

<N¢9 Sian)
w=|—

T mb
(/Y (/€)= Yi (g O) s (i €)
JO(me/C)Yl(me/C/) - YO(me/C)Jl (me/C’/)
(13)

where N is the number of slots around the circumference,
20 = n/N, and C' = (R, — d)/R, characterizes the radial
position of the bottom of the corrugations relative to the outer
wall radius. Since they implicitly assume in their model s = 2/,
the parenthesis in (13) becomes 1/2 in the limit of a large
number of slots. In the next section it will be shown that the
two ways of approaching the problem are almost equivalent.

The characteristic equation (9) can be readily applied in the
limit of vanishing normalized surface impedance w to obtain
the characteristic equation of a TE,,, mode in a coaxial cavity
with smooth inner-conductor surface

Jv/n(me/C)Yr/n(me) - Y/rz(me/C)']vln(me) =0.

The normalization factor Cr,, and the field coefficient A,
can be easily obtained from (12) and (10) under the same
limiting condition w = 0. Note that the mode eigenvalues
depend on the ratio C' of the outer to the inner radius of
the coaxial resonator. If the radius of the inner conductor is
very small compared to the outer radius then the characteristic
equation (14) becomes the usual characteristic equation of TE
modes in an empty cylindrical resonator, that is J}, (Xmp) = 0.
Modes with caustic radius R, = mR,/xmp larger than the
inner conductor radius are only slightly influenced by the
presence of the rod. Solutions of (14) will be also presented
in the next section.

Let us now calculate the ohmic losses of the microwave
power on the resonator walls. The dissipated power density is
given by [12]

(14)

1
Pohm = iRstH: (15)
where R, = 1/(0é) is the surface resistance, o is the
conductivity of the material, and 6 = [2/(wuo)]*/? the

skin depth. The contribution of the transverse magnetic field
components to the losses has been neglected since the gyrotron
operates close to cutoff. To derive an expression of the wall
loading in terms of the output power and the diffractive @-
factor of the resonator we use the energy balance equation to
obtain

(16)

1 L/2 |
Qaig Pout = EEOanQlax/ f(z)dz
/2

where L is the cavity length. Concerning gyrotron cavity
design, the most important parameter is the peak value of the
wall loading, which on the outer wall and on the top surface
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of the corrugations is given by

Outer wall
2126 Zr2n (Xm)
e =T e G Quinlo (A7)
Joipp £
Top corrugation surface
on28 22 (x /0
Preb = 3z L“}‘;( - ) ~CrpQainFou (18)
ot

where the cylindrical function Z,, is given in (3). In case
of a Gaussian field profile f(z) the integral is approximately
equal to 0.625L.

The axial component H, of the magnetic field inside the
slot, given in (4b), induces wall currents on the radial surfaces
of the corrugations, as well as at the bottom surface. The
loading of these surfaces is readily found to be
radial surface

peak
eak pz t 2
pfradlal = cog2 (Xm:l;/Ro) €os (mex/Ro) (19a)
bottom surface
peak
eak Pi 1o
Pl bottom = oy (19b)

c0s?(Xmpd/ Ro)

In the limit of vanishing cosine function these formulas still
apply because the numerator also approaches zero there.

For a corrugation depth d close to a quarter of the free-space
wavelength, which will be shown later to be an appropriate
design value, the loading of the top surface of the corrugations
(r = R;) is negligible, as in this case the normalized surface
impedance w tends to infinity and the RF magnetic field at
R; vanishes. Under these conditions the main part of the
dissipated power on the inner conductor comes from the wall
loading at the bottom, as well as at the radial surfaces of the
corrugations.

III. NUMERICAL RESULTS AND DISCUSSION

It was already mentioned that the main advantage of a
coaxial geometry concerning mode competition is the depen-
dence of the mode eigenvalue ymy, on the radii-ratio parameter
C. Typical solutions of the characteristic equation (9) as a
function of C' are shown in Fig. 2(a) with the corrugation
depth d as parameter. The azimuthal index is set to m = 8
and the given examples are in a relatively low eigenvalue
range in order to be able to compare with results obtained
from numerical codes such as MAFIA. A realistic working
mode for high power and high frequency gyrotrons will
be of much higher order. The behavior of the eigenvalue
curves xmp(C) will be described in terms of the ratio d/A.,
where A; = 2nR,/xmp is the cutoff wavelength. Since A,
is a function of the eigenvalue yx, we choose the hollow
waveguide eigenvalue of the TEg 3 mode (xg3 = 17.774)
as a reference for the description of the parametric curves
in Fig. 2(a). In the case of a smooth coaxial insert (thick
curves in Fig. 2(a)) for large values of C (small R;) the

eigenvalues are practically independent of C' and equal to the
corresponding hollow waveguide eigenvalues. With decreasing
C (increasing R;), the influence of the rod becomes gradually
more important. The eigenvalue curves exhibit first a positive
slope dxmp/dC and after passing a minimal value they
rapidly increase (negative slope dxmp/dC) in the region of
strong influence of the rod (small C'). When the corrugation
is added, the region of positive slope broadens and moves
toward higher C' values (curves a, b, and c). The eigenvalue
minimum decreases and also occurs at higher C values. As
the corrugation depth approaches A./4, the minimum value
of an eigenvalue curve becomes equal to the eigenvalue of
the next lower radial mode with the same azimuthal index
m (solid curve ¢ or dashed curve d). The eigenvalue curve
now consists of a constant part at the corresponding hollow
waveguide eigenvalue (not visible in Fig. 2(a), see thick solid
line in Fig. 3), then a part having positive slope in relatively
high C values and another nearly constant part at a value which
is equal to the hollow waveguide eigenvalue of the next lower
radial mode. At that point where the influence of a smooth rod
started, indicated by a decrease in eigenvalue, the eigenvalue
in the corrugated system starts to increase, so that the rest of
the curve (toward smaller C) exhibits only a negative slope
dXmp/dC. For A./4 < d < 3X./8 (solid curves d and e in
Fig. 2(a) or curves above x ~ 47 in Fig. 3) the positive slope
vanishes and the eigenvalue curves remain with a constant
undisturbed part, and a part of negative slope due to a strong
influence of the rod. For higher d the eigenvalue curves exhibit
a positive slope again, until d = A./2, where they become
approximately the same with those of a smooth coaxial cavity
(solid curve f in Fig. 2(a)). In even higher d the described
behavior will be repeated periodically with a period of /2.

It has been shown in [3] and [4] that in a coaxial cavity
with tapered smooth inner conductor there is the possibility
of selective influence on the diffractive quality factor of
different modes, and thus on the starting current requirements
of these modes. In a coaxial cavity with a downtapered rod a
positive slope dxmp/dC of the eigenvalue curve leads to an
increase of the mode diffractive quality factor, and vice versa.
Nevertheless, it is obvious from the curves in Fig. 2(a), that
in case of a smooth rod (thick solid curves) some modes will
have an increase of their ()-factor while some others will have
a decrease of (), depending on the slope of their eigenvalue
curve at the design range of the C'-parameter. It will be shown
later that to avoid high wall loading on the rod the working
mode must remain nearly undisturbed (dxyp/dC = 0), which
sets a limit on the minimal usable C' value. This means also
that the quality factor of the working mode will remain the
same as in the corresponding hollow cavity. Therefore any
increase in quality factors of possible competitors must be
avoided.

Modes with a caustic radius close to that of the working
mode are usually the most serious competitors because they
couple as well to the electron beam as the working mode.
The influence of the inner conductor on the eigenvalues starts
approximately when the rod gets near to the caustic radius
of a mode, so that obviously only the modes with smaller
caustic radius can be disturbed by the rod if C is chosen as
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Fig. 2. (a) Eigenvalue versus C for TEg 3 mode (dashed lines) and TEg 4

mode (solid lines). Thick lines are for smooth inner conductor (d = 0), thin
lines as labeled: d/A. = 0.08 (a), d/Ac = 0.17 (b), d/Ac: = 0.21 (c),
d/Ac = 0.26 (d), d/Ac = 0.38 (e), d/Ac = 0.50 (f) with Ac/Ro = 0.35
and /s = 0.5. (b) Section from (a) around the “degeneracy point” between
TEg,3 and TEg 4 (only curves (¢) with d/A; = 0.21, d/R, = 0.075).

small as acceptable. But in case of a smooth inner conductor
these weakly influenced modes will unfortunately exhibit a
positive slope in their eigenvalue curves, as discussed above,
which will lead to an increased ()-factor and possibly to
unstable operation, if a downtapered rod is used. Employing
an uptapered rod would solve the problem only for the few
weakly influenced modes, but would increase the quality
factors of all the strongly influenced modes. Actually the
problem is that the eigenvalue curves for a coaxial geometry
with smooth rod are not monotonic.

On the other hand, it is shown in the first paragraph of
this Section that the introduction of longitudinal corrugations
on the inner conductor solves this problem in the sense that
with a corrugation depth in the range A\./4 < d < 3)./8 the
eigenvalue curves xmp(C) are monotonic with a negative or
vanishing slope for all values of C. Therefore by choosing
the minimal acceptable value for C, imposed by wall loading,
the working mode and the other noninfluenced modes will

keep the same quality factor as in a hollow cavity, while
the quality factors of some of the competing modes will
be decreased. Thus a first design rule for coaxial gyrotron
cavities could be to use a downtapered rod and a corrugation
with slot depth slightly larger than A./4. Nevertheless, to
avoid mode competition with higher cyclotron harmonics, it
is desirable to keep the slot depth as small as possible. If, for
example, d = \./4 at the first cyclotron harmonic, the modes
at the second cyclotron harmonic, with eigenvalues twice as
high, will not be influenced by the corrugation since the slot
depth corresponds to d = \./2 in their eigenvalue region.
Thus some of them will exhibit a positive slope and may
become serious competitors due to an increased quality factor.
To avoid positive slopes in eigenvalue curves at the second
cyclotron harmonic the slot depth must be slightly decreased
from d = A /4, where \. is the cutoff wavelength of the
operating mode.

In the range d < A./4, a slot depth d can be found such that
for a restricted design range of C and x the curves Xmp(C)
show only a negative slope, even though at higher C' values,
out of the design range, a positive slope appears. This is
actually demonstrated in Fig. 3, which gives an overview of
the eigenvalue curves of m = 8 modes at d/ R, = 0.033. Atan
eigenvalue x = 47 the chosen corrugation depth corresponds
to A./4. It is seen that the positive slope parts seem to form
a single, additional “eigenvalue curve” as A./4 approaches d
and for high C values. This curve can be approximated by the
solution of the following equation

Y’f:’L(me/C) + U’Ym(me/C) =0.

This equation is derived from (9) by dividing by J/,(Xmp)
and neglecting the Bessel function Jy, (xmp/C) and its deriva-
tive, which are small compared to the Neumann function
Y (Xmp/C) for small arguments. The actual design problem
is now to determine a slot depth d smaller than A./4 for the
working mode such that no positive slope in the eigenvalue
curves of the working mode and any possible competing mode
with different azimuthal index can appear inside the region
of interest, which is given by the maximum C of the cavity
and the cyclotron amplification bandwidth. It was already
mentioned that modes with caustic radius smaller than the
caustic of the working mode will exhibit a negative slope in a
corrugated system with a slot depth approaching A./4. In the
narrow eigenvalue range, which corresponds to the cyclotron
amplification bandwidth (+£5%) these are practically all the
modes with m < mgq where myq is the azimuthal index of the
operating mode. Since the caustic radius of the operating mode
must be greater than the inner conductor radius, the inequality
x/m < Cy holds for m > my in the cyclotron amplification
bandwidth. Therefore, (20) can be further simplified using the
recurrence relations for Neumann functions to yield

Yop = mC

o W(Xmp)
where the term Y, (Xmp/C)/Ym (Xmp/C) has been neglected,
which is an acceptable approximation for C > xup/m.

Equation (21) is an approximation of the undesired positive
slope parts of the eigenvalue curves, so that for a given C

(20

2D
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Fig. 3. Eigenvalue versus C for modes with m = 8 at d/R, = 0.033 and
l/s = 0.5. Solid lines are solutions of (9) taking w from (7), dashed lines
are also solutions of (9), but taking w from (13). The thick solid line is the
eigenvalue curve of TEg g.

and m, any curve of greater eigenvalues will not exhibit a
positive slope. Therefore for a given minimum eigenvalue a
minimum usable d in terms of A, can be determined using (7).
The azimuthal index of the possible competitors is considered
to be smaller than 2mg. With /s = 1/2 a minimum d
of 0.21), (w =~ 2) is computed. This slot depth results in
d = 0.4 at the second cyclotron harmonic, so that only small
positive slopes in the eigenvalue curves can appear there. The
minimum d can be slightly decreased if /s is increased up to
the mechanically feasible limit.

Let us now summarize the derived design principles of
a coaxial gyrotron cavity with corrugated rod. The inner
conductor should be downtapered (decreasing radius toward
the cavity output), with radius R; as large as possible to
influence a maximum number of modes. The working mode
should remain undisturbed, which sets an upper limit to the
radius and a corresponding lower limit to C. An effective
slot depth of d ~ 0.2). is considered as a proper design
value to improve the stability of the operating mode against
competitors in the first and second cyclotron harmonic. The
effective corrugation depth d can be increased up to 3A./8, if
mode competition with the second cyclotron harmonic is not
considered.

To compare the presented model to that of Li et al. [6],
solutions of the characteristic equation (9) are given in Fig. 3
using expression (13) for the normalized impedance w for the
same geometrical slot depth d (dashed curves, mostly covered
by the solid curves). It can be seen that the behavior is similar
in both approaches. Both solutions can be made to coincide
nearly exactly, if an effective d is used in (13), in this special
case at d/R, = 0.04. The difference in effective slot depth is
explained by the different geometry of the two models, since
Li er al. [6] use a nonrectangular slot geometry with boundary
planes along the cylindrical coordinates. In general one can
apply (7) to corrugations with nonrectangular shaped slots, if
an effective slot depth is used [13]. This also means that one
has to take care and use an effective slot depth in case the
slots are not perfectly rectangular.

To check the applicability of corrugated cavities to gy-
rotrons, the electromagnetic fields of the modes must be
investigated. This also will give an insight into the behavior
of the positive-slope parts of the eigenvalue curves, which
seem to form a single, additional curve for high C values,
as discussed above. In Fig. 4 the radial profile of the H,
component is presented at six different points marked in Fig. 2.
Note that the points 1, 3, and 5 belong to the same eigenvalue
curve, while 2, 4, and 6 belong to the next higher radial mode.
These two curves actually do not touch, although they are
approaching very close to each other (see Fig. 2(b)). From
Fig. 4 one can recognize two kinds of fields. In the parts
of the eigenvalue curves with positive slope the energy is
concentrated near the rod, while in the constant parts the field
profile is similar to the commonly known one of the hollow
waveguide, and is therefore well suited to be used in a gyrotron
cavity. The fields at points 1, 4, and 6 show the character of a
TEg,3 mode, even though points 4 and 6 belong to the fourth
eigenvalue curve. The fields at points 2, 3, and 5, with their
maximum on the inner surface, are permitted by the average
surface impedance at » = R;. For convenience we will call a
mode with such a field pattern “inner mode” in the following.
The inner mode appears in all positive-slope regions of the
eigenvalue curves, if the slot depth is sufficiently high. As
it is concentrated on the rod, it is influenced even at very
high C values, in contrast to the usual modes. Therefore the
inner mode looks like an independent additional mode for
high C values, where the usual modes are not disturbed by
the rod. Interaction between the inner mode and modes with
the usual transverse structure takes place only at the “points
of degeneracy,” which indeed are not crossing points (sec
Fig. 2(b)). As it can be seen in Fig. 4 the field at the inner
boundary r = R, changes sign at these points. This indicates
that the “eigenvalue curve” of the inner mode, as given by
(20), is not continuous but consists of the positive-slope parts
of the different eigenvalue curves. It should be pointed out
again that this mode does not exist for A./4 < d < A./2.

To give a typical example for wall losses the loading of the
cavity walls has been computed using (17)—(19) for a TEg 3
mode. The frequency was assumed to be 28 GHz, the output
power 1 MW and the diffractive quality factor 1200, while
the conductivity was that of ideal copper. The corrugation
depth was taken d/R, = 0.075. In Fig. 5 the wall loading
on the outer wall (thick line) and on the bottom surface of
the corrugations (dashed line) is presented together with the
eigenvalue curve (thin line). The part of the eigenvalue curve
with positive slope is included to study the influence of the
inner mode on wall loading. The losses on the top surface of
the corrugation are about a factor of 20 lower than those on
the bottom. For C' > 5 the inner mode causes a strong loading
on the bottom surface of the corrugations while the outer wall
is nearly unloaded. Note that with such a high loading the
decreased ohmic quality factor could dominate the increased
diffractive quality factor, thus increasing the starting current
of the inner mode. In the constant part of the eigenvalue curve
(3.5 < C < 5), where the mode is nearly an undisturbed
TEg,3, the loading of the outer wall is approximately constant
to 0.7 kW/cm? while that of the bottom surface is decreased
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Fig. 4. (a) Radial profile of the H.-component of TEg 3 (1) and the inner
mode (2) at C' = 5.3 (d/R, = 0.075). Curve numbers refer to the marked
points in Fig. 2(a) or (b). (b) Radial profile of the H.-component of TEg 4
(4) and the inner mode (3) at C = 5.0 (d/R, = 0.075). Curve numbers
refer to the marked points in Fig. 2(a) or (b). Note that the TEg 4 now shows
the field structure of a TEg,3 mode. (¢) Radial profile of the H.-component
of TEg 4 (6) and the inner mode (5) at C = 3.5 (d/R, = 0.075). Curve
numbers refer to the marked points in Fig. 2(a). Note that the TEs 4 now
shows the field structure of a TEg,3 mode.
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Fig. 5. Wall loading versus C for TEg 4 (d/R, = 0.075). The inner mode
appears for C > 5.

to an acceptable level of 0.3 to 1 kW/cm?. By further decrease
of C the loading of both surfaces increases, especially the one
at the bottom surface. Therefore, with regard to wall loading
the design range of the C' parameter is limited in general, in
this example to 3.5 < C' < 5. In this range the wall loading
at the bottom of the corrugated surface is of the same order
as.in the case of smooth inner conductor.

IV. COMPARISON WITH MAFIA CODE

MAFIA is a numerical code using the finite integration
technique (FIT) algorithm to solve Maxwell’s equations [14].
In this study MAFIA has been used to compare with the
results of the theoretical model presented in Section IL. [ Two-
dimensional simulations were performed in a sector of 7/8 of
a coaxial waveguide with five longitudinal slots (I/s = 1/2).
Assuming ideal electric conductors on the radial boundary of
this sector the eigenmodes in such a geometry are TEs(ﬁ‘l),p
and TMg,, , (n € N). A number of simulations were carried
out with different ratio C' and corrugation depth d. As an
example, the eigenvalues found by MAFIA for d/R, = 0.075
are compared in Fig. 6 with the solutions of (9). In any case,
the eigenvalues determined by both methods were equal up
to the accuracy of the MAFIA code, which was limited by
discretisation. Note that in Fig. 6 also the increasing positive
slope for disturbed modes is found.

In Fig. 7(a) and (b) the radial profile of the H, magnetic
field component evaluated by MAFIA (thick lines) and by
expressions (2c) and (4b) (thin lines) is presented, assuming
C = 2, and d/R, = 0.075. Excellent agreement is found
both inside the slots, where the field is approximated by a
trigonometric function, and outside the slots, where the field
is expressed in terms of Bessel functions. Modes with the
field concentrated on the inner conductor are also indicated by
MAFIA simulations, as can be seen in Fig. 7(b).

Good agreement was found concerning wall loading com-
puted from MAFIA simulations and compared to the cor-
responding results from (17)-(19), especially for the ratio
between losses at the top surface of the corrugations to the
bottom surface.
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V. CONCLUSION

A coaxial cavity configuration with longitudinal corruga-
tions on the inner conductor has been investigated in the case
of small corrugation periodicity (constant impedance surface).
This geometry is proposed for use in highly overmoded
cavities of high power gyrotrons in order to reduce the problem
of mode competition. With an appropriate slot depth (d =~
0.2); — 3X./8), the corrugations remove any positive slope
dxmp/dC from the eigenvalue curves xmp(C) for all the
modes inside the cyclotron amplification bandwidth, so that
no unwanted modes with increased quality factor can appear
in the spectrum of a coaxial cavity with downtapered inner
conductor. It is therefore possible to design coaxial cavities,
where only the chosen working mode TE,, and modes with
the same or higher caustic radius R. = mR,/ Xmp €xhibit a
high diffractive quality factor, while Qqig of the other modes
is considerably reduced. Since the required starting current

is proportional to 1/Q}, modes with decreased Quig require
an increased beam current to start oscillations in the gyrotron
cavity. Therefore, compared to a coaxial cavity with smooth
rod, modes with lower caustic radius are no longer serious
competitors. On the other hand, modes with caustic radius
considerably higher than that of the working mode couple
weakly to the electron beam, because they exhibit low fields at
the beam position. Finally, in a cavity with properly corrugated
and downtapered inner conductor only modes with caustic
radius close to the caustic radius of the working mode remain
as potentially dangerous competitors. Within the cyclotron
amplification bandwidth these are the modes with azimuthal
index m close to the azimuthal index of the working mode.
A quality-factor spectrum of a coaxial cavity with corrugated
and downtapered inner conductor and d = 0.22), was already
given in [15].

An impedance corrugated rod with d < A./4 permits
the existence of a type of mode (inner mode) with its field
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concentrated on the inner conductor. For low C the usual
waveguide modes transform to the inner mode along the
cigenvalue curve, where dxmp/dC is positive, and they end
up at the eigenvalue of the neighboring radial mode with the
same m. For high C the inner mode behaves as an additional
mode with an eigenvalue approximately described by (20)
or (21). This mode does not interfere with the usual modes,
except for some points where it is degenerate with them. One
possible problem caused by this inner mode could be increased
mode conversion in the resonator uptaper section, where C'
rises from the cavity Cy to infinity. Therefore the corrugations
should be stopped before C' becomes high enough to permit
the appearance of such a mode.

Care has to be taken to avoid mode competition between
the cyclotron harmonics due to a possible increase of the
quality factor at the second cyclotron harmonic. A corrugation
depth equal to A./4 for the operating mode (first cyclotron
harmeonic) results in an effective depth of A\./2 in the second
cyclotron harmonic eigenvalue region. Then the positive slope
of the eigenvalue curves appears as in the case of smooth
inner conductor, and the ()-factor of these modes increases
for a downtapered inner conductor. These modes could be-
come unexpected competitors, as their starting currents can be
comparable to the starting current of the working mode. The
problem is solved by using a slightly smaller slot depth of
d ~ 0.2). On the other hand, employing d > \./4 could be a
means to enforce oscillations at the second cyclotron harmonic
in low power gyrotrons. Note that for these modes wall losses
on the rod will be much higher than at the outer wall, so that
the gyrotron output power must be limited to a few kW.

The Forschungszentrum Karlsruhe and the IAP Nizhny
Novgorod will investigate the presented design principles in
a joint experiment [15]. A TEyg 16 coaxial gyrotron with 1.5
MW output power at 140 GHz is already under construction,
and first experiments are expected in autumn 1995.
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